$\mathrm{TPC1}-\mathrm{Programme}$ de colle du 06/10 au 10/10

[E1] CIRCUITS ÉLECTRIQUES DANS L'ARQS

Ren	marque : Cours et exercices.
	Exprimer la condition d'application de l'ARQS : $f \ll \frac{c}{L}$
	Vocabulaire : dipôle, nœud, branche, maille, en série, en dérivation
	Définir l'intensité du courant électrique comme un débit de charge à travers une surface
	Utiliser la loi des nœuds
	Définir le potentiel de référence
	Utiliser la loi des mailles
	Pour une résistance :
	– connaître la relation $u=Ri$ (loi d'Ohm)
	– tracer la caractéristique
	– démontrer la puissance perdue par effet Joule : $\mathcal{P}=Ri^2$
	Pour un condensateur : du
	– connaître les relations $q = Cu$ et $i = C \frac{du}{dt}$ – démontrer l'énergie stockée : $\mathcal{E}_{el} = \frac{1}{2}Cu^2$
	<u> </u>
	- savoir que u est toujours continue
	– savoir qu'il est équivalent à un circuit ouvert en régime stationnaire
	Pour une bobine : di
	- connaître la relation $u = L \frac{di}{dt}$
	– démontrer l'énergie stockée : $\mathcal{E}_{mag} = \frac{1}{2}Li^2$
	- savoir que i est toujours continue - savoir qu'elle est équivalent à un fil en régime stationnaire
	Pour un générateur de tension :
	- définir et tracer la caractéristique d'un générateur idéal
	- définir et tracer la caractéristique d'un générateur réel
	Trouver graphiquement un point de fonctionnement
	Énoncer et démontrer la résistance équivalente d'une association de deux résistances en série et en dérivation
	Énoncer et démontrer les formules des ponts diviseur de tension et de courant
[E	[2] CIRCUITS DU PREMIER ORDRE
Ren	marque : Cours et exercices.
	Déterminer un circuit équivalent en régime stationnaire
	Exploiter la continuité de u_C et i_L
	Déterminer une ED d'un circuit d'ordre 1

 \Box La mettre sous forme canonique et identifier la constante de temps τ

$$\frac{df}{dt} + \frac{f(t)}{\tau} = \frac{f_{\rm SP}}{\tau}$$

- ☐ Établir la solution de cette ED
- \square Savoir que τ donne l'ordre de grandeur de la durée du régime transitoire
- □ Établir un bilan de puissance, un bilan d'énergie et savoir interpréter physiquement ces bilans
- $\hfill \square$ Mettre en œuvre la méthode d'Euler pour résoudre numériquement une ED du premier ordre